
Asiago Astrophysical Observatory

Largest astronomical observatory in Italy

2 sites: Pennar (1035 m) and Mt. Ekar (1370 m)

<u>3</u> telescopes class 1-2 m

Managed by INAF-OAPd and University

'Galileo' T122 telescope

Ø: 122 cm

Inaugurated 1942, largest telescope in Europe*

Still used for research, outreach and education (see Pizzella's talk)

B&C low resolution spectrograph

Schmidt telescope

Ø: 67/92 cm

Built 60's, originally in Pennar, now in Ekar

4k x 4k CCD (1 sq. deg.) imager (*uBVgri*)

Since 2020 only in robotic mode (except with students)

'Copernico' T182 telescope

Ø: 182 cm

Inaugurated 1973, largest telescope in

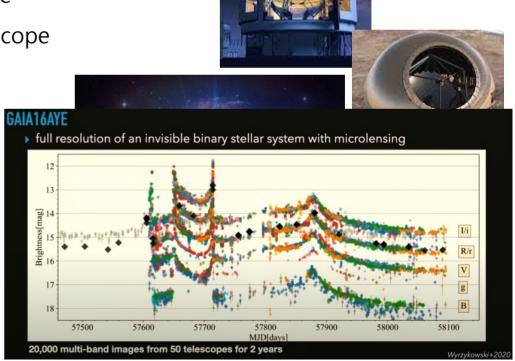
- AFOSC low-res spectrograph, imager and polarimeter

- Echelle high-res spectrograph

AQUEYE fast photons counter (see Zampieri's talk)

Science with small telescopes

20-30 m telescopes are coming, 1-2 m are still useful?


For Time Domain Astronomy, Yes!

Transients (GRBs, Novae, SNe...) require fast response (ToOs) and flexible scheduling, easier at a small telescope

Follow-up/monitoring of variable sources (microlensing, AGNs, TDEs, Miras...) need:

- *yrs-long* campaigns
- frequent (~daily) observations
- -100s hrs

impossible to get at large telescopes

Asiago flexibility and rapid response

T122: request a specific night with just an e-mail

T182: submit a ToO few hrs before night starts observers can swap nights

All T182 proposals: 2-yrs long Large Programs → extended follow-up campaigns, multiple nights/month

Schmidt: robotic observations overrided by

GRB or GW trigger (still human intervention)

Oversubscription ~1 (at JWST~9...)

DEPARTMENT OF PHYSICS AND ASTRONOMY - PADOVA UNIVERSITY GALILEO TELESCOPE OBSERVING SCHEDULE

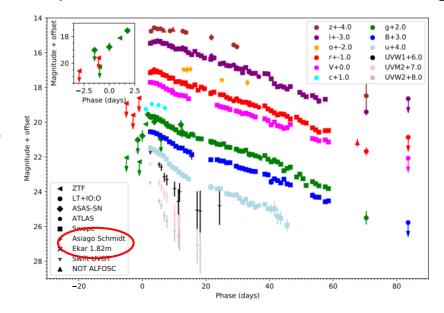
FEBRUARY 2024

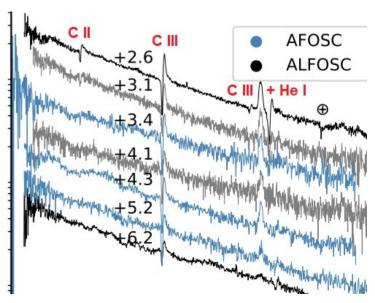
Date	Moon	Instrument	Set-up	Observer	Project
1 Th 2 Fr 3 Sa 4 Su	L.Q.	B.& C.	1200tr/mm (R, 25°) "300tr/mm (5°)	CAZZOLA OCHNER (until 20:00)/CAZZOLA OCHNER OCHNER	Binary stars Binary stars Service Service
5 Mo 6 Tu 7 We 8 Th 9 Fr 10 Sa 11 Su	N.M.	B.& C. " B.& C.	300tr/mm (5°) " " " "	MUNARI PIZZELLA PIZZELLA PIZZELLA PIZZELLA OCHNER (until 20:00)/PIZZELLA PIZZELLA	Novae monitoring NEON SCHOOL NEON SCHOOL NEON SCHOOL NEON SCHOOL NEON SCHOOL NEON SCHOOL
12 Mo 13 Tu 14 We 15 Th 16 Fr 17 Sa 18 Su	F.Q.	B.& C.	1200tr/mm (B, 14.45°) 300tr/mm (5°) 600tr/mm (9.2°) = 300tr/mm (5°)	MUNARI OCHNER OCHNER IJIMA IJIMA = OCHNER (until 20:00)	Novae monitoring Service Service Symbiotics Symbiotics = Outreach
19 Mo 20 Tu 21 We 22 Th 23 Fr 24 Sa 25 Su	F.M.	B.& C. + IFI B.& C.	300tr/mm (5°) 300tr/mm (5.5°) " 1200tr/mm (R, 25°)	SPOLON SPOLON CIROI CIROI CIROI CAZZOLA CAZZOLA	Occultations Occultations II Cielo come Laboratorio II Cielo come Laboratorio II Cielo come Laboratorio Binary stars Binary stars
26 Mo 27 Tu 28 We 29 Th		B.& C.	300tr/mm (5.5°) " 1200tr/mm (R, 25°)	CIROI CIROI OCHNER (until 20:00)/CIROI CAZZOLA	Il Cielo come Laboratorio Il Cielo come Laboratorio Il Cielo come Laboratorio Binary stars

We remind that:

(1) In case of a planned outreach visit, the observer must temporarily leave the telescope to Paolo Ochner (about 30 minutes (2) It is possible to use free or reserved nights after a request to Stefano Ciroi (stefano ciroi@unipd.it).

SN 2021csp: 1st Type Icn SN


SN ejecta can 'interact' with a CSM \rightarrow interacting SNe, narrow em lines with P Cyg profiles. CSM H-rich \rightarrow SNe IIn; He-rich \rightarrow SNe Ibn.



SNe with H-, He-poor CSM were predicted (Smith 17; Woosley 17) but not observed, until 2021.

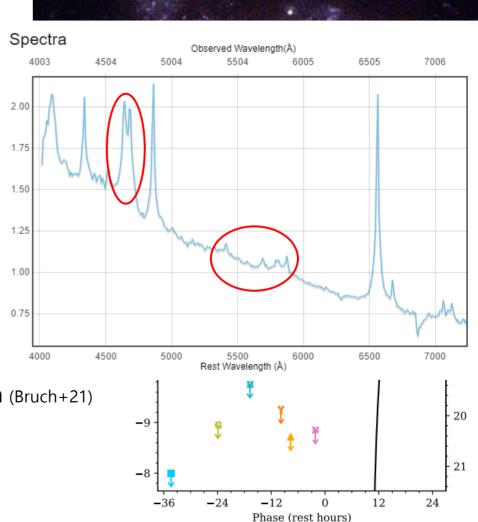
Fraser+21: 3 early AFOSC spectra, 3 1-hr ToOs in 3 consecutive nights

Prototype, now 6 SNe Icn in TNS

SN 2023ixf

Closest and brightest SN in 10 years

Peak $V=10.8 \text{ mag} \rightarrow \text{amateurs can observe}$


Detections few hours pre-discovery (Hosseinzadeh+23) → constrain on rise time and progenitor type

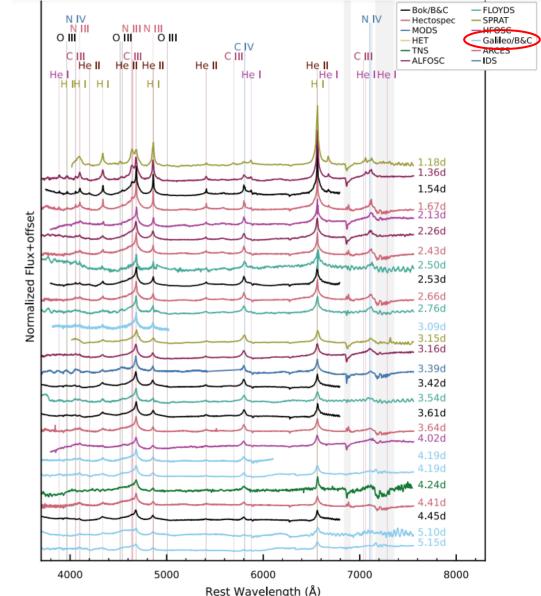
Classification spectrum (Perley+23):

Narrow em. lines from highly ionized atoms =

'flash spectroscopy features' (Gal-Yam+14)

Generally fade in few days \rightarrow 2/3 spectra showing them (Bruch+21)

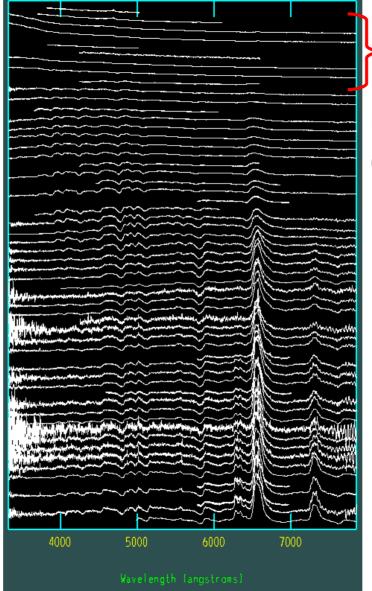
SN 2023ixf


Bostroem + 23 get intra-night evolution of them

58 spectra in 15 days (!), 9 by T122

Unprecedented study on variation of

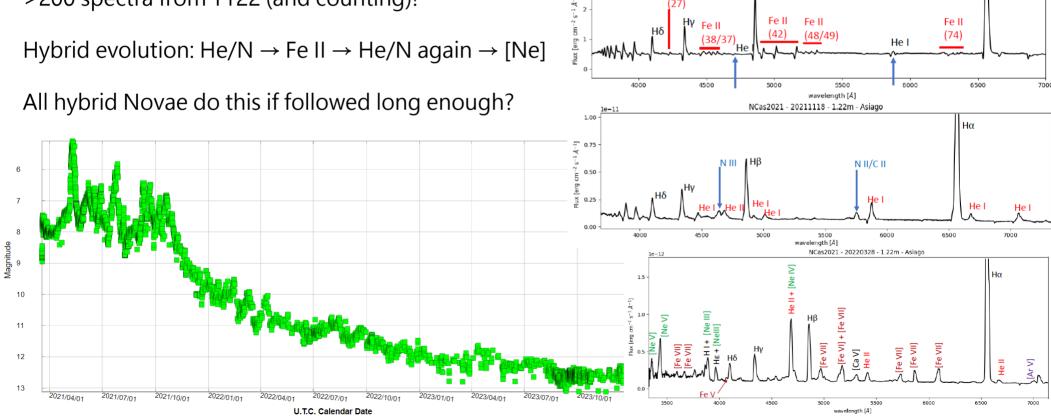
CSM density, structure and composition


Determination of mass-loss rate

SN 2023ixf

Follow-up continued for months

>60 spectra from Asiago only! (until January, and counting...)



First 9 published in Bostroem+23 (>30 citations in 4 months...)

Nova Cas 2021

Longest Nova on record: still visible after 3 yrs!

>200 spectra from T122 (and counting)!

wav elength [Å]

NCas2021 - 20210425 - 1.22m - Asiago

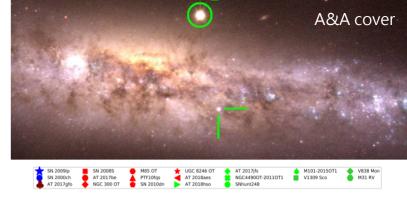
Luminous Red Novae

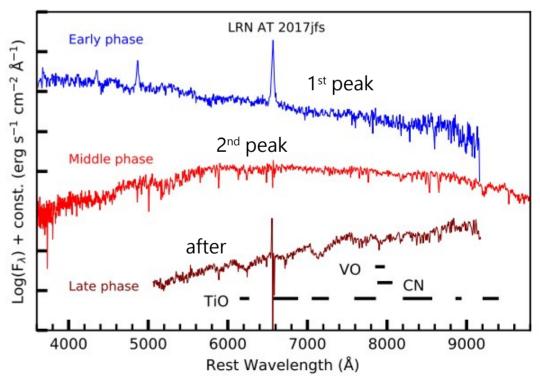
Gap transients: stellar explosions in -10 < M_V < -15 mag range

Non-compact merger of stars in a common envelope,

from <1 M_{*} to ~50 M_{*}

8 objects published (so far)

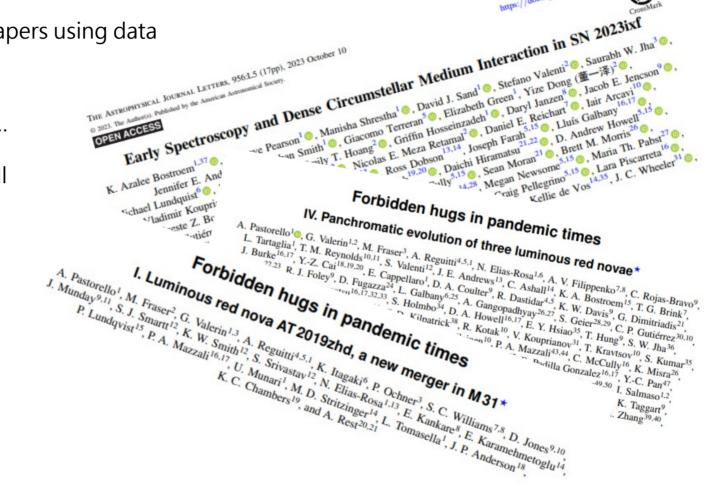

2-peaks light curve


Spectra evolution:

Hot, H in em. \rightarrow G/K star, no H α , metals in abs.

→ M star, molecular bands

Publications



In the last 3 years 18 refereed papers using data

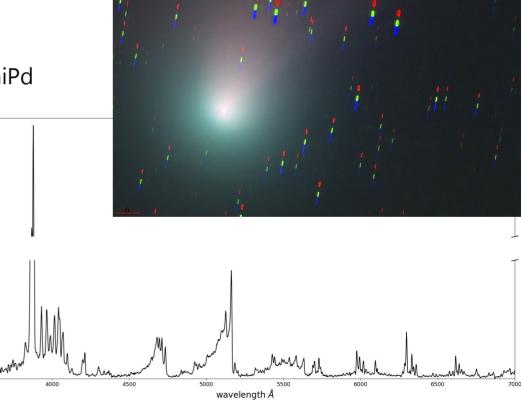
from Asiago telescopes

Countless AstroNotes, circulars...

 \rightarrow 1-2 m class telescopes are still scientifically productive

...and even comets!

Project of a book: Atlas of cometary spectra:


133 spectra of 37 comets taken at T122 and T182,

+ imaging from Schmidt, in last >10 yrs

Managed by a group of Msc Degree students @UniPd

0.06

Wikipedia

BHTOM workshop

Organized by Lukasz Wyrzykowski (Warsaw University)

How a network of small telescopes can be scientifically productive

Asiago Schmidt started to contribute last September

Vietri sul Mare, SA, 15 April

Conclusion and Future

Asiago telescopes are still relevant in the transient field

T182 will become robotic → more efficiency (see Tomasella's talk)

Plans to upgrade CCDs at all 3 telescopes (money permitting...)

Waiting for EM counterparts of GW events during O4 (part 2)

More scientific discoveries ahead (thanks to LSST)

