The use of small- and medium-class telescopes for spot modeling through multiband photometry

ALFREDO BIAGINI

Università degli Studi di Palermo

CHIANTI TOPICS 26/02/2024

Young Stellar Objects (YSO)

Difficult observations because of high stellar activity

Only few young planetary systems known

STELLAR ACTIVITY

SOHO image (NASA) of a sunspost with respect to Earth dimensions

RELATED PROBLEMS:

- spectral lines distortion
- chromatic signals
- lightcurve alterations during transit observations
- fake transits

V1298 TAU

This is a young star with the following properties (T. J. David, L. A. Hillenbrand et al., 2019) :

Mass (M⊙)	Radius (R⊙)	Age (Myr)	Rotational period (d)	Temperature (k)
1.101±0.005	1.34±0.06	23 ±4	2.87±0.02	4970±120

- a young star a with a mass ~ 1
- 3 (b,c,d) confirmed transiting planets (KEPLER) and one to be confirmed (e)

V1298 TAU

This is a young star with the following properties (T. J. David, L. A. Hillenbrand et al., 2019) :

Mass (M⊙)	Radius (R⊙)	Age (Myr)	Rotational period (d)	Temperature (k)
1.101±0.005	1.34±0.06	23 ±4	2.87±0.02	4970±120

- a young star a with a mass ~ 1

• 3 (b,c,d) confirmed transiting planets (KEPLER) and one to be confirmed (e)

Possible clues about the Solar System formation

Osservatorio Polifunzionale del Chianti (OPC):

- Ritchey-Chretien
- Diameter: 80 cm
- f/8
- 20'x20'
- Johnson filters U-B-V-R-I

Gal-Hassin Observatory:

- Ritchey-Chretien
- Diameter: 40 cm
- f/3,8
- 83'x83'
- Sloan filters u', g', r', zs_2 and H alpha filter

Observatory of Palermo:

- Ritchey-Chretien
- Diameter: 40 cm
- 40'x40'
- Sloan filters g', r', i'

REM Telescope (La Silla):

- Ritchey-Chretien
- Diameter: 60 cm
- f/8
- Ross2: g', r', i', z'
- REMIR: z', J, H, K

V1298 TAU OBSERVATIONS

- February 2021:
 - Osservatorio Polifunzionale del Chianti (OPC) observed with B, V and R filters
 - Gal-Hassin using r' and H alpha filters.

High airmass and poor time coverage per night.

- December 2021:
 - OPC and REM observations
 - Gal Hassin observatory could not observe the star due to meteorological reasons

Low S/N ratio because of the Moon

- February-March 2022 (analysis ongoing):
 - OPC: B-V-R-I filters
 - PALERMO (g', r', i')
- September 2022:
 - REM and Gal-Hassin
- December 2022:

-Palermo

DATA ANALYSIS

- **CALIBRATION:** dark frames, flatfield frames
- DIFFERENTIAL PHOTOMETRY: evaluation of the stellar flux with respect to STABLE check stars
- EVALUATION OF CHECK STARS, each with respect to the others

I used AstroImageJ (Karen A. Collins *et al* 2017) for the first steps of data reduction.

- TEMPORAL BINNING
- SELECTION ACCORDING TO AIRMASS

Observed lightcurve

Gal-Hassin	riangle r'	$\triangle Halpha$
02/2021	0.015 ± 0.009	0.033 ± 0.015

OPC	riangle B	riangle V	riangle R	$\triangle I$
02/2021	0.0255 ± 0.0017	0.020 ± 0.002	0.017 ± 0.002	/
12/2021	/	0.028 ± 0.002	0.0206 ± 0.0018	/
02/2022	0.07 ± 0.04	0.054 ± 0.019	0.046 ± 0.005	0.026 ± 0.004

REM	riangle g'	riangle r'	riangle i'	riangle z'	$\triangle J$
12/2021	0.042 ± 0.009	0.040 ± 0.008	0.033 ± 0.006	0.017 ± 0.006	0.021 ± 0.006

Palermo	riangle g'	$\triangle r'$	riangle Halpha
02/2021	0.029 ± 0.009	0.04 ± 0.06	0.0161 ± 0.0016

Amplitude increases at shorter wavelengths

(in B is 30% higher than in R band)

Data and fitted lightcurve of V1298 Tau observed in February 2021 by Gal-Hassin and OPC (left) and REM in December (2021). Lightcurves are shifted for clarity purpose.

Data and fitted lightcurve of V1298 Tau observed in February 2021 by OPC in both B and R band

SPOT_MODEL

Initial hyphotesis:

- Corotating spots
- Not evolving spots during an observational run
- (≈ 2 rotational periods of the star): REJECTED

Then we chose a **3 days RUN** because of spot evolution

Lightcurve simulation:

- Estimation of visible stellar surface fraction occupied by spots at a given time
- Spots and surface emissions at different temperatures (estimated through Phoenyx models)
- Rotation of the star
- Fitting the data using the simulated lightcurves
- Search for common solutions for all bands

SPOT_MODEL

Initial hyphotesis:

- Corotating spots
- Not evolving spots during an observational run
- (≈ 2 rotational periods of the star): REJECTED

Then we chose a **3 days RUN** because of spot evolution

Lightcurve simulation:

HIGH ERROR WITH ONE BAND

(±500-600 K)

HIGH ERROR WITH ONE BAND

STRONG DEGENERACY BETWEEN **RADIUS**, **LATITUDE** AND **TEMPERATURE** OF SPOTS

MULTIBAND PHOTOMETRY

We combine data of different photometric bands to break the degeneracy, retrieving the **TEMPERATURE DIFFERENCE** between **SPOTS** and **QUIET STELLAR TEMPERATURE**

SPOTS AND FACOLAE?

We chose to verify also the presence of faculae.

We modeled the faculae as «hot rings» around the spots.

SPOTS AND FACOLAE?

We chose to verify also the presence of faculae.

We modeled the faculae as «hot rings» around the spots.

ONLY SPOTS MODEL SELECTED WITH logEV criterion

RESULTS TABLE

DATES	Bands	Temperature (K)
21-22-23/02/2021	B-R-V	4327^{+184}_{-221}
22-23-24/02/2021	B-R-V	4415^{+122}_{-165}
23-24-25/02/2021	B-R-V	4132^{+188}_{-291}
11 - 12 - 13/12/2021*	R-V	3559^{+419}_{-378}
12-13-14/12/2021	B-R-V	3720^{+274}_{-421}
13-14-15/12/2021	B-R-V	3761^{+296}_{-453}
21 - 22 - 23/02/2022**	R-V-I	3761^{+276}_{-383}

BANDS with SNR <20 discarded

RESULTS TABLE

DATES	Bands	Temperature (K)	
21-22-23/02/2021	B-R-V	4327^{+184}_{-221}	-
22-23-24/02/2021	B-R-V	4415^{+122}_{-165}	
23-24-25/02/2021	B-R-V	4132^{+188}_{-291}	BANDS with disca
11 - 12 - 13/12/2021*	R-V	3559^{+419}_{-378}	
12-13-14/12/2021	B-R-V	3720^{+274}_{-421}	
13-14-15/12/2021	B-R-V	3761^{+296}_{-453}	
21 - 22 - 23/02/2022**	R-V-I	3761^{+276}_{-383}	
			_

SNR < 20 ded

BANDS at SHORTER WAVELENGTHS are MORE EFFICIENT in constraining spots temperature

FIRST RUN

SECOND RUN

THIRD RUN

SET: 21-22-23 Day: 23 - 1 SPOT MODEL

SET: 22-23-24 Day: 23 - 1 SPOT MODEL

SET: 23-24-25 Day: 23 - 1 SPOT MODEL

SET: 23-24-25 Day: 23 - 1 SPOT MODEL

ONLY SPOTS

- Transition in activity pattern?
- Only effective spot-facola temperature measured?

PERIODS	Spot Temperature (K)
02/2021	4250 – 4320 <i>K</i>
12/2021	3308 – 3978 <i>K</i>
02/2022	3377 – 4507 <i>K</i>

• We need more observations with also UV band if possible

ONLY SPOTS

- Transition in activity pattern?
- Only effective spot-facola temperature measured?

• We need more observations with also UV band if possible

A CHANGE IN ACTIVITY?

ACTIVITY CHANGE? Call

ACTIVITY CHANGE? H alpha

Halpha/Call

Halpha/Call

Change in stellar activity between first and second run

H alpha/Call

Change in stellar activity between first and second run

HYPHOTESIS: change in the ratio of FILLING FACTORS of FACOLAE and SPOTS

FUTURE PROJECTS

- Model validation using solar multiband photometrical data
- spots model for the red dwarf stars
- Analysis of REM and HARPS-N data of our AOT48 proposal
- Observation of AOT48 proposal targets from OPC.

THANKS

There is a lot of work to do!

Please... save me! HELP!!

THANKS!!